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The Haseman and Elston (H-E) method uses a simple linear regression to model the squared trait difference of sib
pairs with the shared allele identical by descent (IBD) at marker locus for linkage testing. Under this setting, the
squared mean-corrected trait sum is also linearly related to the IBD sharing. However, the resulting slope estimate
for either model is not efficient. In this report, we propose a simple linkage test that optimally uses information
from the estimates of both models. We also demonstrate that the new test is more powerful than both the traditional
one and the recently revisited H-E methods.

The Haseman-Elston (H-E) method is widely used in
genetic linkage studies that use sib pairs (Haseman and
Elston 1972) to study quantitative traits. Specifically, let
Xik and pik be the squared trait difference and the pro-
portion of alleles shared identical by descent (IBD) at
the marker of interest for the kth sib pair of the ith
family, ,…, Ki; ,…, n. Given pik, the H-Ek p 1 i p 1
method specifies that

EX p a � bp , (1)ik 1 ik

where EX is the expected value of X and where a1 and
b are unknown parameters to be estimated. A large ob-
served value of the standardized estimate for b suggests
a linkage between the trait and marker loci. Note that,
for the large sample case, the test proposed by H-E is
nonparametric, in the sense that the null distribution of
the test statistic does not depend on the distribution of
the trait values. However, if the traits are normally dis-
tributed, the H-E method can be substantially less effi-
cient than the maximum-likelihood–estimation proce-
dure (Amos et al. 1996; Fulker and Cherny 1996; Wright
1997). To increase the power of the H-E test for linkage,
one may also consider the trait sums of sib pairs in the
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analysis. Let Yik be the squared mean-corrected trait sum
for the kth sib pair of the ith family. Then, it follows
from Drigalenko (1998) that

�EY p a � bp , (2)ik 2 ik

where a2 is an unknown intercept. Now, let andˆ ˆb b1 2

be the least-squares estimators for b of models (1) and
(2), respectively. Then, under the condition that the var-
iances of the error terms of models (1) and (2) are equal,
the estimator is more efficient than˜ ˆ ˆ ˆb p (b � b )/2 b1 2 1

and (Drigalenko 1998). This estimator is equivalentb̂2

to the least-squares estimator of b for the model

2EZ p a � bp , (3)ik 3 ik

where a3 is an unknown intercept and Zik is the mean-
corrected trait product for the kth sib pair of the ith
family. On the basis of this observation and numerical
studies, Elston et al. (2000) proposed to use model (3)
for testing linkage. However, when the trait values
among siblings are moderately or highly correlated, the
test based on the estimate of b in model (3) may not be
efficient. This motivates us to consider estimation pro-
cedures for b, which optimally use the information from

and .ˆ ˆb b1 2

Let us consider a class of linear estimators for b, using
both model (1) and model (2) in the form of ˆwb �1

, where w is a given weight, which may be dataˆ(1 � w)b2

dependent. Note that , , and are special membersˆ ˆ ˜b b b1 2

in this class. Let be the estimated covariance of ˆĵ b12 1
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Table 1

Empirical Significance Level for the New Test

r AND n
SIBSHIP

SIZE

NOMINAL SIZE OF TEST

.05000 .01000 .00100 .00010

0:
50 2 .06854 .01734 .00250 .00042

5 .04430 .00737 .00053 .00004
100 2 .05888 .01323 .00152 .00018

5 .04254 .00658 .00041 .00003
200 2 .05435 .01143 .00115 .00014

5 .04324 .00698 .00043 .00003
500 2 .05190 .01067 .00107 .00010

5 .04492 .00763 .00058 .00004
.3:

50 2 .06850 .01717 .00253 .00038
5 .04286 .00718 .00055 .00004

100 2 .05815 .01243 .00136 .00015
5 .04202 .00691 .00046 .00002

200 2 .05427 .01107 .00109 .00010
5 .04311 .00715 .00050 .00004

500 2 .05179 .01040 .00099 .00009
5 .04505 .00792 .00060 .00005

and and let and be the estimated variances ofˆ ˆ ˆb j j2 11 22

and , respectively. Then, for large n, the estimatorˆ ˆb b1 2

with weight has theˆ ˆ ˆ ˆ ˆ ˆb w p (j � j )/(j � j � 2j )22 12 11 22 12

smallest variance among all the linear combinations of
and (Rao 1965; Wei and Johnson 1985). Further-ˆ ˆb b1 2

more, this estimator is approximately normally distrib-
uted, with mean b and variance 2ˆ ˆ ˆ ˆ(j j � j )/(j �11 22 12 11

. Note that the weight w is data dependent.ˆ ˆj � 2j )22 12

Essentially, we let the data guide us to choose the weight,
regardless of the true correlation among sib-pair trait
values. The distribution theory mentioned above is valid
not only for the least-squares estimators but also for any
consistent estimators and for models (1) and (2)ˆ ˆb b1 2

(e.g., see Hettmansperger 1984, for rank-estimation pro-
cedures for linear-regression models).

It is important to note that study families often include
multiple siblings—for this case, cannot be obtained byĵ

use of the statistical software for the standard linear-
regression model. If we use the least-squares principle
to estimate parameters, consistent estimators and ˆâ b1 1

for model (1) can be obtained by solving the following
equation by the generalized estimating equations (GEE)
techniques with an independent working model (Liang
and Zeger 1986):

n

( ) ( )1p X � a � bp p0 . (4)�� ik ik 1 ik
ip1 k

Similarly, consistent estimators and for model (2)ˆâ b2 2

can be obtained by solving the equation with X and a1

in equation (4) being replaced by �Y and a2, respec-
tively. With this technique, let e p X � a � b pik1 ik 1 1 ik

and let . Then,e p �Y � a � b pik2 ik 2 2 ik

( ) ( )¯ ¯� � e p � p � e p � pikm ik ikl ik[ ]
i k k

ĵ p ,ml 22( )¯�� p � pik[ ]
i k

where and is the average of p at the marker¯m,l p 1,2 p

of interest among all the sib pairs in the study. Note that
and are the ordinary least-squares estimators forˆ ˆb b1 2

b but that their estimated variances and covariance may
be quite different from those obtained from the standard
linear-regression analysis.

To investigate the performance of the proposed esti-
mator , we conducted an extensive numerical study tob̂

examine whether the test based on preserves the nom-b̂

inal type I–error probabilities and its power profile. Spe-
cifically, in our simulation, we assumed that, for the jth
member in the ith family, its trait value Tij follows a
random-effects model:

T p G � C � � ,ij ij i ij

where Gij is the random variable from the locus-specific
contribution to the trait defined by the genotypes and
the genetic model, Ci is a random-effect variable that is
the common component shared by the offspring in the
same family, including both genetic and environmental
factors, and e is the error term. These three random
components are assumed to be independent. For G, we
assume that there are two alleles (A and a, with fre-
quencies p and respectively) for the trait locus,1 � p,
and the trait contributions from the genotypes AA, Aa,
and aa are 1, d, and �1, respectively. The value of d
under the additive-, dominant-, and recessive-inheritance
modes is 0, 1, and �1, respectively. The variance of G
can be expressed as , whereV � V V p 2p(1 � p)[1 �a d a

and . Furthermore, we as-2 2 2 2d(2p � 1)] V p 4p (1 � p) dd

sume that C and e are normally distributed, with mean
0 and variances Vc and V�. Now, let the locus-specific
heritability and let theh p (V � V)/(V � V � V � V)a d a d c �

sibling residual trait correlation r p V /(V � V � V �c a d c

. Then, Vc and V� are uniquely determined by Va, Vd,V)�

h, and r. In our simulation, we assumed a fully infor-
mative marker at the disease locus, with zero recombi-
nation and with parental genotypes assigned randomly
according to the allele frequencies. The offspring’s hap-
lotypes were derived by random transmission of parental
alleles.

Under the null hypothesis, the variance of G is 0. To
test the validity of our test constructed from , we ex-b̂

amined whether the empirical levels of the test are close
to their nominal counterparts. To this end, we considered
16 cases with , .3, two sibship sizes (2 and 5), andr p 0
the number of families , 100, 200, and 500. Forn p 50
each case, we simulated 1 million realizations. The re-
sulting empirical levels of the test for various nominal
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Figure 1 Power comparisons between the new procedure and
the two H-E tests for linkage. A, Additive-trait locus with . B,P p .1
Dominant-trait locus with . C, Recessive trait with . TheP p .1 P p .2
average Z scores using traditional (model [1]), revisited (model [3]),
and unified H-E methods are represented by dotted, dashed, and solid
lines, respectively. Locus-specific heritability is (circle), .2h p .1
(square), .3 (triangle), and .4 (diamond).

significance levels are reported in table 1. With respect
to the type I–error rate, our procedure behaves reason-
ably well even when the nominal level is as low as .0001.
For and when each family has one sib pair, ourn ! 200
procedure is slightly liberal, in the sense that the em-
pirical levels tend to be higher than the nominal levels.
On the other hand, when study families have multiple
sib pairs, our method tends to be slightly conservative.

Although, in theory, the estimator is more efficientb̂

than , , and , it is important to know whether thisˆ ˆ ˜b b b1 2

optimality property holds for practical situation. To
this end, we considered 360 cases, with three genetic
models (additive, dominant, and recessive); , .2,h p .1
.3, and .4; , .2, .3, .4, and .5; and , .1, .2,P p .1 r p 0
.3, .4, and .5. For each case, we simulated 1,000 re-
alizations of 1,000 independent sib-pair observations.
In figure 1, we summarize the power profiles for the
H-E methods with models (1) and (3) and for our pro-
cedure, using the average Z score, based on 1,000 re-
alizations. Figure 1A is for an additive-trait locus with

, figure 1B is for a dominant-trait locus withP p .1
, and figure 1C is for a recessive-trait locus withP p .1
. The average Z scores for the additive andP p .2

dominant models do not vary much with p, whereas
those for the recessive model increase with p. On the
basis of our numerical study, the power for the tradi-
tional H-E method based on model (1) increases with
r, but the power of the revisited H-E method based on
model (3) decreases with r. The revisited H-E method
is more powerful than the traditional method when the
sibling trait correlation is low, and the traditional
method is more powerful when the sibling trait cor-
relation is high. On the other hand, our procedure using
models (1) and (2) simultaneously is more powerful
than the two H-E methods mentioned above, especially
when the sibling trait values are moderately correlated.

In this report, we have demonstrated that the distri-
bution-free test for linkage based on a particular linear
combination of the estimators for the slope b in models
(1) and (2) is more powerful than the existing nonpara-
metric tests. The new test procedure is valid for the case
with multiple sibs in the study families. Although, to
gain efficiency for estimation of b, one may use an elab-
orate working model for the GEE approach, it seems
rather difficult to specify, for the estimating function, a
weight function that reflects the true correlation among
the squared differences and sums. The new method
was implemented in an executable program named
“XWXW,” which runs on various computer platforms
and is available from the FBAT Web site.
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